On-line: гостей 0. Всего: 0 [подробнее..]

Форум научного руководителя лаборатории "Наномир"

А. Ю. Кушелева

АвторСообщение



Не зарегистрирован
ссылка на сообщение  Отправлено: 25.12.08 06:34. Заголовок: Ошибки физики-17. Физический смысл преобразований Лоренца.


§ 16. ФИЗИЧЕСКИЙ СМЫСЛ ПРЕОБРАЗОВАНИЙ ЛОРЕНЦА
И ЧЕТЫРЕХВЕКТОРЫ
Полный текст - http://s1836.land.ru/cl/lor/lor.htm

О преобразованиях Лоренца в учебной и научной литературе написано очень много и в разных публикациях им придают неоднозначный смысл. В подходах Лоренца и Эйнштейна они также имеют совершенно разное содержание.
Естественно задать вопрос: так в чем же секрет и магическая сила этих преобразований координат и времени, которые, если можно так выразиться, перевернули наши представления об окружающем нас мире в ХХ веке?
На простейшем примере покажем, что понять физический смысл преобразований Лоренца не представляет большой сложности.
Пусть в направлении оси ОХ (рис.16.1) распространяется плоская волна В со скоростью с.


Рис.16.1. Движение наблюдателя Н и распространение плоской волны В вдоль оси OX.

Уравнение движения фронта этой волны в неподвижной системе координат, связанной со средой, имеет вид:

xв = c t. (16.1)

Наблюдатель Н движется в том же направлении со скоростью v. Уравнение движения наблюдателя такое

xн = v t. (16.2)

Уравнение (16.1) можно записать и в такой форме, сместив его по оси OX с целью перехода в подвижную систему координат,

xв - v t = c t - v t = c(t - b xв/c), (16.3)

где b = v/c. Чтобы уравнение (16.1) осталось в силе, мы просто вычли из правой и левой его части величину v t.

Такой простой прием преобразования уравнения (16.1) – это и есть уже начало преобразований Лоренца. Осталось только ввести в это уравнение справа и слева масштабный множитель g, который появился в запаздывающем потенциале (15.36).
Умножив обе части уравнения (16.3) на масштабный множитель g, мы получаем

g (xв – v t) = c g (t - b xв/c), (16.4)

или в сокращенной форме

x’в = c t’, (16.5)

где x’в = g (xв – v t) и t’ = g (t - b xв/c), (16.6)

Преобразования координат и времени (16.6) и есть настоящие преобразования Лоренца, которые были здесь получены так просто. При этом не будем забывать, что уравнение (16.5) – это то же самое уравнение (16.1) для распространения фронта волны, только записанное в новых штрихованных переменных.
Смысл этих операций свелся к тому, что, сместив уравнение (16.1) по оси OX , как бы переходя в подвижную систему координат наблюдателя, мы одновременно смещаем это уравнение и по оси времени, чтобы исходное уравнение (16.1) не нарушилось. Масштабный же множитель g введен только потому, что он появляется в силовых потенциалах для подвижных частиц при непосредственном их вычислении.
Во время этих преобразований по осям OY и OZ ничего не происходит, и эти переменные остаются без изменений.
Для плоской волны получилось все очень просто, однако в случае сферической волны ситуация чуть сложнее. Все дело в том, что электромагнитные поля, которые генерируются элементарными частицами, это - мир сферических волн, поскольку они всегда рождаются в некоторой малой области и распространяются со скоростью света в форме расширяющейся сферы. Уравнение распространения фронта сферической волны имеет вид

R = c t, (16.7)

где R - радиус расширяющейся сферы. Для сравнения полезно вспомнить уравнение (16.1), которое было записано для плоской волны. Возведем обе части уравнения (16.7) в квадрат

R2 = x 2 +y 2 +z 2 = c 2t2 . (16.8)

Теперь нетрудно догадаться, что если мы запишем уравнение (16.8) в форме

x' 2 +y 2 + z 2 = c 2t' , (16.9)

где x' и t' применены в соответствии с выражениями (16.6), то это будет то же самое уравнение (16.7) в тех же динамических переменных x, y, z, t, поскольку подобная замена переменных не нарушает исходного уравнения (16.7).

Проверим это в действии. Для этого возведем обе части уравнения (16.4) в квадрат

g 2(x 2 – 2 x v t + v 2t 2) = c 2g 2(t 2 - 2b x t/c + b 2x 2/c 2). (16.10)

После соответствующей перегруппировки слагаемых имеем

g 2x 2(1 - b 2) = c 2g 2t 2(1 - b 2) (16.11)

и окончательно после сокращения g 2 со скобкой получаем

x 2 = c 2 t 2, (16.12)

т.е. форма уравнения (16.1) полностью восстановилась. При этом заметим, что сокращение скобок в (16.11) произошло внутри каждой из частей, и поэтому не затрагивает масштабы по осям Х и Y, если эти переменные возникают в уравнении. Поэтому сохраняется и уравнение (16.7).
Другими словами, с использованием преобразований Лоренца мы добиваемся того, что сложная задача, связанная с перемещением объекта в поле сферических волн, переводится обратно в статику, и тем самым существенно упрощается ее решение. После замены переменных x, t на x', t' дальше мы поступаем с уравнениями так, как уже привыкли поступать в статике, где все было очень просто. Данная задача не является динамической, поскольку в формулах преобразований не содержится ни масс, ни сил, ни каких-либо полей. Это чисто кинематический эффект, поскольку вводится поправка на этот эффект, чтобы его скомпенсировать в уравнении распространения сферической волны. При этом вводится также понятие местного времени t’ в подвижной системе координат для полной компенсации введенных изменений по оси ОХ в данном уравнении.
Итак, мы установили, что преобразования Лоренца – это простая геометрическая поправка к картине волн на кинематический эффект, обусловленный перемещением объекта в среде.
В качестве примеров подобных поправок можно привести использование местного времени в различных городах мира для того, чтобы распорядок дня для людей, проживающих в разных городах, выглядел примерно одинаково. Здесь вводится кинематическая поправка, учитывающая вращение Земли. Аналогичная кинематическая поправка применяется в обсерваториях для телескопов, чтобы изображения планет, звезд или других наблюдаемых объектов оставались неподвижными за время наблюдения.
Поскольку человек сам создает эталоны длины и эталоны времени, то для перевода динамической задачи в статику несложно ввести новый эталон длины по оси ОХ и новый эталон времени, назвав его местным временем.
Если бы все частицы в эфире были неподвижны, то их силовые поля являлись бы сферически симметричными, и многие формулы имели простой вид, как закон Кулона или закон всемирного тяготения. Но все в мире движется, в результате чего силовые поля частиц за счет запаздывания рассеянных ими эфирных волн деформируются и создают большое многообразие различных по своей форме сил. Мы также живем в мире деформированных несферических полей ("кривых полей"), поскольку Солнечная система движется в эфире со скоростью около 300 км/c в направлении созвездия Льва.
В результате всех этих деформаций полей, обусловленных движением микрочастиц, электродинамика становится необычайно сложной и трудно поддающейся осмыслению частью физики, что порождает в свою очередь многочисленные мистификации в отношении пространственно-временных представлений.
Приведем еще один пример, где необходимо учитывать движение частицы в полях. Из теории поля хорошо известно, что полная производная по времени от некоторой полевой функции, вычисленная с учетом движения частицы в поле, не совпадает с частной производной от той же функции, вычисленной в неподвижной точке поля. Вычисляя полную производную по времени, мы переходим в систему координат, связанную с движущейся частицей, для которой полевые характеристики воспринимаются совсем по-иному, нежели для неподвижной частицы.
Образно говоря, движущаяся частица как бы выполняет своеобразную роль наблюдателя в подвижной системе координат и своим поведением сообщает нам, что процессы там происходят совсем не так, как у нас в неподвижной системе.
Когда мы переходим в подвижную систему координат, производя замену координаты Х и времени t в соответствии с преобразованиями Лоренца, то и функции, входящие в различные динамические уравнения, очевидно, также изменят свой вид, поскольку они могут зависеть от координаты Х и времени.
Представляет большой интерес найти некоторые общие правила, по которым можно было бы как по таблице производить преобразование различных функций, не повторяя кропотливых подстановок x' и t' в функции и уравнения. Оказывается, что такие правила удалось вывести, опираясь на те же самые преобразования Лоренца.
В работе [1] приводится пример прямого вывода преобразований Лоренца в применении к импульсу частицы р. При этом установлено, что величины (m c, p) ведут себя при переходе в подвижную систему координат точно так же, как и величины (c t, r) в формулах Лоренца (16.6).
Можно привести целый ряд других примеров, когда четыре функции, одна из которых скалярная, а три других - это проекции некоторого известного вектора в декартовых координатах, проявляют себя как аналоги величин (c t, x, y, z) при преобразованиях Лоренца [2, 3].
Если говорить точнее, то преобразования Лоренца касаются только скалярной функции и х - компоненты подходящего к этой скалярной функции вектора. Поэтому данные правила являются довольно простыми и не требуют разработки для этого какого-то специального математического аппарата или тензорного исчисления.
Можно подсказать небольшой секрет в подборе скалярной функции под соответствующий вектор. Поскольку преобразования Лоренца чаще всего используются в электродинамике, где участвуют волновые процессы со скоростью волн с, то скалярная функция, как правило, входит в эти преобразования в качестве временной компоненты в комбинации с константой с.
Поэтому в данном случае просто следует соблюдать размерность при подборе скалярной функции к вектору, т.е. скалярная функция должна иметь ту же самую размерность, что и вектор. Например вектору импульса р мы подбираем скаляр mc, волновому вектору k соответствует скаляр w/c, вектору плотности тока j = r v соответствует скаляр r c, векторному потенциалу А - скалярный потенциал j /c и так далее.
В этом случае преобразования Лоренца записываются в симметричной форме и имеют вид:

x' = g (x - b c t),

ct' = g (ct - b x). (16.13)

Несмотря на всю простоту данных преобразований, математики назвали рассматриваемую комбинацию из скалярной функции и вектора четырехвектором и разработали для таких четырехвекторов специальный четырехвекторный анализ. Он внешне очень напоминает обычный векторный анализ, но со своими специфическими свойствами, которые полностью определяются преобразованиями Лоренца [2].
Все же следует заметить, что скомбинировать две компоненты с помощью преобразований Лоренца, которые очень легко запомнить, может оказаться намного проще, чем путаться в громоздких и абстрактных тензорах и индексах, требующих специального изучения и запоминания, поскольку четырехвекторный анализ существенно отличается от обычного векторного анализа. За этими тензорами уже с трудом можно разглядеть реальные физические поля и уравнения движения материальных объектов.
Тензорный способ описания электромагнитных полей может оказаться удобным в целом ряде инженерных расчетов, например, при расчете ускорителя элементарных частиц или разнообразных реакций с участием этих частиц [2]. Но он не способствует пониманию физики процессов, как, к примеру, не помог в выводе уравнений Максвелла, выражения для силы Лоренца и калибровки Лоренца, не помог понять природу массы и заряда частиц, кулоновского поля и так далее. Об этих физических характеристиках мы продолжим разговор в следующих разделах.
Таким образом, единственной основой для всех преобразований функций и электромагнитных полей при переходе в подвижную систему координат являются обычные преобразования Лоренца. Их физический смысл и был детально рассмотрен нами выше, единственное назначение которых - это приведение сложной кинематической задачи к статике, где можно использовать привычные уравнения, полученные в статических условиях.
Поскольку все идеи, заложенные в преобразованиях Лоренца и четырехвекторах, возникли и развились в рамках обычных классических представлений, а также в классической электродинамике Максвелла - Лоренца, то можно сделать вывод, что они не имеют прямого отношения к специальной теории относительности (СТО).
Эйнштейном была выдвинута гипотеза о том, что все упомянутые выше преобразования могут быть получены только из принципа относительности и постулата об эквивалентности всех инерциальных систем отсчета. Исторически же преобразования Лоренца появились задолго до появления СТО и на основе совсем иных соображений.
Преобразования Лоренца возникли в рамках общих волновых представлений, которые носят универсальный характер, и поэтому не приходится сомневаться, что они будут справедливы для любых волновых процессов, в частности, в акустике движущейся среды [4]. Если преобразования Лоренца занимают центральное место в СТО, то в акустике эти преобразования используются на основе обычных волновых представлений, минуя принцип относительности.

ЛИТЕРАТУРА

1. Фейнман Р., Лэйтон Р., Сэндс М. Р. Фейнмановские лекции по физике. М.: Мир, 1977. Вып. 1,2. С. 306.
2. Фейнман Р., Лэйтон Р., Сэндс М. Фейнмановские лекции по физике. Электродинамика. М.: Мир, 1977. Вып. 6. C.15-150, 244-321.
3. Фейнман Р., Лэйтон Р., Сэндс М. Фейнмановские лекции пофизике. Электродинамика. М.: Мир, 1977. Вып.5. C. 9-11.
4. Блохинцев Д.И. Акустика неоднородной движущейся среды.М.: Наука, 1981. С. 37-99.
5. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Второе издание, переработанное и дополненное. Екатеринбург, Изд-во Учебно-метод. Центр УПИ, 2006, 490 с.

За дополнительной информацией можно обратиться на сайты:

http://osh9.narod.ru http://s6767.narod.ru http://s1836.land.ru
http://s1836.narod.ru http://shal-14.boom.ru http://shal-14.narod.ru



Спасибо: 0 
Цитата Ответить
Новых ответов нет


Ответ:
1 2 3 4 5 6 7 8 9
большой шрифт малый шрифт надстрочный подстрочный заголовок большой заголовок видео с youtube.com картинка из интернета картинка с компьютера ссылка файл с компьютера русская клавиатура транслитератор  цитата  кавычки моноширинный шрифт моноширинный шрифт горизонтальная линия отступ точка LI бегущая строка оффтопик свернутый текст

показывать это сообщение только модераторам
не делать ссылки активными
Имя, пароль:      зарегистрироваться    
Тему читают:
- участник сейчас на форуме
- участник вне форума
Все даты в формате GMT  3 час. Хитов сегодня: 3
Права: смайлы да, картинки да, шрифты да, голосования нет
аватары да, автозамена ссылок вкл, премодерация откл, правка нет